
Brief information about the project

Name of the project	AP13268784 «Investigation of the Effect of
	Electrochemical Etching Modes on the Optical and
	Structural Properties of Porous Silicon»
Relevance	Porous Silicon (PS) appears to be an inexpensive and easy-
	to-manufacture material for use in crystalline silicon solar
	cell technology. In particular, the possibility of modulating
	the refractive index of PS layers during their fabrication by
	changing the current density draws the attention of
	researchers to its use in solar cell fabrication technology.
	In this work, emphasis is placed on samples that were
	obtained in a solution containing hydrogen
	hexafluorosilicate and the study of their physical
	properties, as well as the study of the effect of the
	conductivity of the crystalline silicon substrate on the
	physical properties of PS. Preliminary results of the study
	showed that the use of electrolytes based on hydrogen
D	hexafluorosilicate improves the optical properties of PS.
Purpose	Investigation of the influence of electrochemical etching
	modes and conductivity of a p-n structure of single-crystal
	silicon on the optical and structural properties of porous silicon
Objectives	Task 1. Obtaining groups of porous silicon samples under
Objectives	various modes by electrochemical etching of a p-n
	structure from single-crystal silicon in an electrolyte
	containing hydrogen hexafluorosilicate.
	Task 2. Study of the structural, optical and electrical
	properties of porous silicon samples obtained in a solution
	containing hydrogen hexafluorosilicate.
	Task 3. Investigation of the influence of the conductivity
	of the n-layer of single-crystal silicon on the properties of
	porous silicon films obtained in a solution containing
	hydrogen hexafluorosilicate with a change in the depth of
	the n-layer.
	Task 4. Obtaining groups of samples of porous silicon
	under various modes by electrochemical etching of a p-n
	structure from single-crystal silicon in an electrolyte
	containing hydrofluoric acid.
	Task 5. Исследование структурных, оптических и
	электрических свойств образцов пористого кремния
	полученных в растворе содержащий плавиковую
	кислоту.
	Task 6. Investigation of the influence of the conductivity
	of the n-layer of single-crystal silicon on the properties of
	porous silicon films obtained in a solution containing
Expected on J = 1. 1	hydrofluoric acid with a change in the depth of the n-layer.
Expected and achieved results	
	under various etching modes in an electrolyte containing
	hydrogen hexafluorosilicate.
	Expected Result 2: results of the study of surface
	morphology, structure, as well as optical spectra

Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 (reflection, Raman spectra, photoluminescence) and current-voltage characteristics of the obtained samples of porous silicon in a solution containing hydrogen hexafluorosilicate. Expected Result 3: distribution profiles of charge carriers in samples of porous silicon obtained in a solution containing hydrogen hexafluorosilicate depending on the depth of the n-layer. Expected Result 4: samples of porous silicon obtained under various etching modes in an electrolyte containing hydrofluoric acid. Expected Result 5: results of the study of surface morphology, structure, as well as optical spectra (reflection, Raman spectra, photoluminescence) and current-voltage characteristics of the obtained samples of porous silicon in a solution containing hydrofluoric acid. Expected Result 6: distribution profiles of charge carriers in samples of porous silicon obtained in a solution containing hydrofluoric acid. Expected Result 6: distribution profiles of charge carriers in samples of porous silicon obtained in a solution containing hydrofluoric acid. Expected Result 6: distribution profiles of charge carriers in samples of porous silicon obtained in a solution containing hydrofluoric acid. Expected Result 6: distribution profiles of charge carriers in samples of porous silicon obtained in a solution containing hydrofluoric acid depending on the depth of the n-layer. 1. Sagidolda Ye. – LSR. Researcher ID: DNT-2266-2022; ORCID: 0000-0002-4608-7573; Scopus Author ID: 56465977800.
List of publications with links to them	 Darmenkulova M.B., Aitzhanov M.B., Zhumatova, Sh. A., Ibraimov M.K., Sagidolda, Ye. Change of Optical Properties of Carbon-Doped Silicon Nanostructures under the Influence of a Pulsed Electron Beam. Journal of Nanotechnology, 2022, 2022, 1320164, Q2, percentile: 74; https://www.scopus.com/record/display.uri?eid=2- s2.0-85132015460&origin=resultslist&sort=plf-f Khaniyev, Bakyt, Ibraimov, Margulan, Sagidolda, Yerulan, Tezekbay, Yerbolat, Duisebayev, Tolagay, Tileu, Ayan, Khaniyeva, Ainur. The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors. Coatings, Volume 13, Issue 1, January 2023, Article number 190. Q2, percentile 64; https://www.scopus.com/record/display.uri?eid=2-s2.0- 85146499368&origin=resultslist&sort=plf-f
Patents	2 applications for an Innovative patent of the Republic of Kazakhstan have been filed

Photoluminescence spectra of PS samples obtained at $J = 20 \text{ mA/cm}^2$, t = 10 min, and U = 10 V. (a) Initial PS. (b) Irradiated PS doped with carbon at different delay times of the moment of registration relative to the laser pulse maximum t_d , μ s: 0 (1), 5 (2), 10 (3), 15 (4), 20 (5), 25 (6), 30 (7), and 35 (8) μ s.